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INTRODUCTION

Dr, David Russell of Wisconsin University delivered a series of
lectures on the control of distributed parameter systems as part of a
seminar course on Topics in Control Theory jointly organized by the
Departments of Mathematics and Electrical Engineering, University of
Minnesota, during the Winter OQuarter of 1969. These notes are based
on the above lectures and were prepared under Contract ONR 3776-00
by M. Balachandra.

In the first two chapters partial differential equation models of
control systems are discussed. First, it is shown that these exhibit
features that do not apnear in discretized models, no matter how many
degrees of freedom the latter may be assumed to have. The first chanter
deals with the vibrating string, for which the method of characteristics
may be applied conveniently, making use of geometric arguments.
Conditions for complete controllability are derived and a typical
optimization problem is formulated. The second chapter concerns the
generalization of the above to higher dimensions and it is shown that it is
necessary to introduce the concent of approximate controllability.

The case of a vibrating circular membrane is discussed and conditions for
approxXimate controllability are obtained,

In Chapter III, a different viewpoint is taken and the problem of
the vibrating string is posed as one involving a self-adjoint, unbounded
operator in Hilbert space. The control problem then reduces to a
trigonometric moment problem and conditions of controllability can be
derived in terms of the density and asymptotic gap of the eigenvalues
of the operator.

Chapter IV deals with time-optimal control with‘bounded control
variables. It is shown that the bang-bang principle of the finite-
dimensional system may be generalized to the infinite-dimensional case with
slight modifications. Specific results are obtained for hyperbolic and
parabolic problems.

The last two chapters are also concerned with generalizing results of
finite-dimensional systems. Chapter V deals with the stabilization of a
linear oscillator by means of a control force depending linearly on

velocity. It is shown that the known results for the finite-dimensional



system can be generalized to the infinite-dimensional case using the
perturbation theory of linear ovmerators. In the last chapter, the

optimal control of a linear system with a quadratic performance index

is considered. For the finite~dimensional case, the control law is
obtained by solving the Kalman-Riccati differential equation and it is
shown that the controls so obtained converge in the limit to that for

the infinite-dimensional problem, as the number of dimensions is increased

without limit.

ii



CHAPTER I

CONTROL OF DISTRIBUTED PARAMETER SYSTEMS
WITH ONE VARIABLE

1. Introduction

Most of the plants which the control engineers work with can be
represented in a number of ways. If we consider a stretched string of
non-uniform density p(x), fixed at the left hand end x = 0 and free to move
vertically at the right hand end x = 1, one can represent small motions by

solutions of the linear second order partial differential equation

32 32
p(x) = -1 = = 0 (1.1)
ot ox
subject to boundary conditions
= 3y 1
y(0,6) =0, 3= (L,8) =< ul® (1.2)

Here 1 is the applied tension and u(t) a controlling force which acts in the
vertical direction at the boundary point x = 1,

It is not absolutely essential that a partial differential equation model
be used, however. One might conceive of the string as composed of n

particles located at points x, = %3 k=1, 2, «..yn having mass,% p(xn)

k
and connected by massless cords which are, nevertheless, capable of sustaining
the tension 1. Letting Vi denote the vertical displacement of the k-th

particle we have equations

dzy Vo = 2y, + 0
1 2 1
p(xy) —35 = t( 1 )
dt e
n
a? 2.+
v Vogq = 2y, + ¥, _
Lom) —X = ¢k kel 4 aa,...,n-1
n k 2 1
at =
n
dzy -y _+v
Loy —2 = ¢ (=2l (1.3)
n n dtz 1

fn

or, in matrix notation
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a2 o (x,) p (%) \
1 -2 1
. 0 ees 0 0
p(x,) p(x,) o (xz)
1 -2 1
0 ese 0 0
P (x3) p(xy) P (x3)
O 0 0 0 o e 1 - 1
P (xn) 0 (xn)
0
0 d2
+ 0 u(t) or ——% = Ay + bu(t)
. dt
* 1 A - nxn matrix, b - n vector (1l.4)
n
p(x)

Other models may also be envisioned, e.g., one composed of n harmonic
oscillators corresponding to n normal modes of vibrators of the string.

Since ordinary differential equations are so much easier to treat than partial
differential equations we might well ask =-- why use partial differential
equations at all., We shall try to give at least a partial answer to that

question here,

2. Discretized Model of a Vibrating String

i A first order linear control system

.%% = Fw + gu F nxm matrix - g m-vector (2.1)

is completely controllable if the vectors g, Fg, Fzg, s Fm-lg form the

columns of a non-singular mxm matrix. To study equation (l.4),we let m = 2n,

0 I 0) b 2 0 3 Ab
F= , g = and compute Fg = s Fig = s FFg = > see
A 0 '\ b 0 Ab 0

k _f° 2k+1g'Akb,
e () P
2

2
We conclude that'g—§ = Ay + bu is completely controllable if b, Ab, A"D,y ess,
dt

Ap—lb form the columns of a non-singular matrix. Now for the matrix A and

vector b occurring in our discrete model of the string



0 / 0 Y
0 . .
: : 2, - 5
L] L] Ab = O 9 A b = 0
0
n plx )o(x g plx )p(x e o)
O(xn) ' ' \ *
=11
oGx)
n=- 1 n-_~2

and continuing, we find that (A by «ees Ab, B) is a lower triangular

matrix with non-zero entries on the main diagonal and hence non-singular,

Thus the discrete model of the string is completely controllable. Among other
things, this means? dy dy
(i) Given any initial state yl(O), coes Yy 0, 575 Tc (0)s eees T (0) and

any time T > O there is a control function u(t) which causes the resulting
dy,

2
solution of g?%ﬂ = Ay + bu to satisfy yl(T) = L. =2y (T) = ——— (T) =

g%g-(I) = Thus control is possible for arbitrarily small T.

(11) If we impose an a priori comstraint |u(t)|< r on the control
force and, for some initial condition, pose the problem of bringing the
syétém iﬁto thé eqﬁilibrium configuration in the least possible time T
then there is exactly one control force u(t) which solves this minimum time
problem and u(t) is a bang-bang control, i.e. u(t) is piecewise continuous
on [0,T] and assumes only the values i‘r.

Béth (1) and (ii) are true no matter how many particles we take the
discretized string to be composed of, One of the first notable features
of the control theory of partial differential equations is that neither (i)
nor. (11) is true for the partial differential equation

a2 82n 82 9 az,
p(x) ""% - T —JZL =0 or -—-% - (x) --% = 0
- et 23 at’ ox”

y0,0 20, 2L (1,0 =T ue), (2.2)
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3. Continuous Model of Vibrating String with Single Boundary Control

rrma——————

To prove this we introduce two families of curves in the (x,t) plane,

¢, = {x(t),n) | & = cxeN}, ¢, = {x(©,0] L= =@} (3.1

These are the two families of characteristics of the partial differential
equation in question.
Let y(x,t) be a solution of equation (2,2) and put

3 3 ) 9
Ny (xst) = 5F = e 5% 5 Ny(x,t) = 5T+ e(x) 3E (3.2)

Let » = El(t) describe a curve in C, and compute

1

an on, dg
4 e 1, i1 71
22 2 2 2
= —X o Sy Sy 3y y
2 7 o) gyt e (5 e Tmp - et 5)
t X
= ﬁl - [c(x)]2 éfl - o' (x)e(x) A
Stz ax2 o * ox

A
an an, dE
4., - =2 -2 2
and 3t (nz(Ez(t):t)) = 3% T 3% @
= 3«2_1 + c(x) ..._B.El + (QEI_..;. (x) -afl + e'(x) §“Y')("' (x))
e o atx bxat O 2 ox 7 1¢

c'(;gft)) (n; (&, (1) ,t) - ngﬁaz(t),t))
2

Thus ny and n, satisfy ordinary differential equations along x = El(t),

X = Ez(t), respectively but these equations are coupled in a rather
unusual way., These equations are very useful. They can be used to prove
the existence of solutions of equation (2.2) and, by applying numerical
integration techniques to them, they yield a method, called the method of
characteristics, for approximating solutions numerically.

We congider (in Figure 1) in the (x,t)~plane the curve x = Ez(t)
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dg

2 _ =
which solves Froae c(EZ(t)), 62(0) 1.
T, fe
Do

FIGURE 1.
This characteristic from the family C2 meets the line x = 0 at point

(O,Tl) and T

1 > 0 since c(x) is everywhere positive. Moreover, the curves

X = Ez(t), x =0 and t = 0 bound a triangular domain which we shall call DO'
Let (xo,t ) be an arbitrary point in DO Then (xo,to) can be joined to
two points on the line segment t = 0, 0 < x < 1 by two curves, x = az(t),
X = (t) from CZ and c1 respectively or else, can be joined to two
points ont=20, O <x<lbyx= Ez(t) from Cz and a composite path formed
from a curve x = gl(t) of Cl’ which cuanects (xo,to) to the line x = 0,
and a curve x = gz(t) from C2 connecting that point on x = 0 with a point

on t = 0. (See Figure 1). Combining this fact with the result that_nl and

N,y satisfy differential equations
dn * dn ]
1 S - 2. < -
at A R R T W T (3-3)

on curves in Cys CZ’ respectively, we conclude that ny and n, are completely
determined in D, by the initial data given on t = 0, 0 < x < 1. For this

0
reason we refer to D0 as the domain of determinacy of the initial conditions.
The control u(t), applied at x = 1, has no influence on the solution
v(x,t) in DO'

In the same way a characteristic curve x = El(t) with

dgy
rraiie c(g;(1)), g(T) =
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.

crosses from (1,T) to a point (O,T-Tl) on x = 0 and cuts off a triangular
domain DT in which ny and Mos and hence y(x,t), is completely determined by
the conditions which we impose at t = T. Since we want y(x,T) = %%-(x,T) = ()
we must have y(x,t) = 0 in DT' DT will be called the domain of determinacy

of the terminal conditions. See Figure 2, below.

t=T
DT J
N O/= gl(t) T l
(0,T-T4) (FIGURE 2)

4., Controllability of the Vibrating String

Now let us put all of the above information together and study the

situation in the rectangle

D= {(xt)] 0<x<1l, 0<tx<T} 4.1y
It will be necessary to consider three cases, depending upon the relationship
0thOT1~
Case (1) T < 2T1. In this case DO and DT intersect in a domain DOT as

on——

shown in Figure 3, In Dor y(x,t) is completely determined by the initial data
and also completely determined by the terminal data. Since we have taken

zero terminal data these determinations are consistent if and only 1if the
initial data are also such that y(x,t) vanishes in DOT' This is not

generally the case., Thus in general there is no solution y(x,t) of the
partial differential equation satisfying both the initial and the terminal
déta. We say then that our partial differential Egggtion system is not

controllable in time T if T< 2T1.

FIGURE 3
T < 2T

Case (11) T = 2T1. In this case D0 and DT do ég? overlap but have exactly

one common boundary point (O,Ti) = (O,T—Tl). The problem now is to extend
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the solution from DOUDT

This is again done by the method of characteristics. Every point (x 0)

into the triangular region D =D =~ (D D, ).

in D can be connected to Do by a path x = gl(t) and to DT by a path x = gz(t).
Using this together with the differential equations saEisfied by ny and n,

we are able to form a system of integral equations in D whose solution yields
a solution of the equation (2.2) and, by showing that the integral equations
Eave a unique solution we obtain a unique extenslon of y(x,t) from DOUD into
D and thus obtain a solution of the equation (2.2) in the complete rectangular
region D. When this extension is complete we will also have available the
function %% (1,t) of the variable t and this gives us the boundary control

function u(t), since
3
a(e) = 3L (1,0).
Now %ﬁ-(l,t) has the same smoothriess properties on the interval ' [0,T] as

2%'(x,0), %%‘(X,O) on 0 < x<1l. Thus in the case T = 2T1 we have in
general a uniquely determined smooth control u(t) on [0,T] bringing the given
It should be noted that

initial state into equilibrium at time T = 2T1.
this time T = 2T1 is the time required for a wave to travel from one end of
the string to the other and return. e=F
D x=E, (t) (x,,t
Ty << At 3=, (0)
FIGURE 4 1 : 1
= Bl Y
2Tl X Ez(t)
x=0 D0 x=1
t=0 :
Let 1y, = max |ut)| . If we impose an a priori constraint
tel0,T]

fu(t)
and if it should happen that r >r0, which is certainly conceivable, we
see that u(t) is the unique control bringing the given initial state to
rest in least possible time and yet u(t) is not a "bang~bang" control-~in fact
it nowhere assumes the values * r,

Although D0 and DT do not intersect in a domain DOT they do meet at the
point (O’Tl) = (O,T-Tl). There is no reason to believe that the wvalues of

Ny and Ny, 28 determined separately in D0 and D, 2 will agree at this point.

0
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As a result we can expect discontinuities in " and Ny along the boundaries
of D, and DO’ respectively. This means that controls are instantly turned

T
on and instantly shut off,
“r u(t)
FIGURE 5

Case (1i1) T > 2T1

In this case D0 and DT are separated in time by an interval Ti < t< T--T1

of length T - 2T1. For points (0,t) with t in this interval we have thus far

assumed only the condition

n
(o]

y(0,t)
which of course implies %% (0,t) = 0. Since

T N .

17 3t 3%
- ¥ oy
CRNET: t ek

this alone is not enough to provide initial values for ny and n,y when integrated
along characteristics x = E (t), X = gz(t) which initiate on

{(,t) | Tl <t < T—Tl} One may specify %% any way one wishes on this

interval and then extend the solution y(x,t) into D, ultimately obtaining

u(t) = = %ﬁ-(l,t) as a control bringing the initial state into equilibrium

at time t = T, There are infinitely many controls now corresponding to

the infinitely many possible choices of gﬁ-(o,t) on Tl <t <T-T

ll

t=T

(0,T-T,) |
x=€2(t)~,__~__,-_-fﬂ,;
0, Tl)
x=0
FIGURE 6
T>2T

1 ' t=0
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There are a number of uses which we can make of the undetermined
function %ﬁl(o,t). We note that %%-(O,t) £ 0 is already continuous for
0<t<T. If we select '%i (0,t), T1 <t < T—Tl so as to continuously
join 2L (0,t), 0 < t < T with & (0,t), T-T, <t < T then all data on
0<t<T, x =0 are continuous and ther= will no longer be discontinuities
on the characteristics x = gl(t), X = Ez(t) bounding DT and D,, respectively.
The control u(t) starts off with u(0+) = 0 and ends with u(T~) = 0. This

avoids sharp stresses in the physical medium,

“\:£EL-§Q
\ T
t \_/

FIGURE 7

5. Optimization Problem for the Vibrating Strin

Since in Case (iii) the control function u(t) is not unique, it makes
sense to pose optimizations problems. The "minimum energy" problem, for
instance, requires one to select, among controls u(t) bringing the initial
conditions into equilibrium at time T, that control for which

T 2
[ u(®)de
0

is as small as possible., We treat this problem in the following way.
It is quite straightforward to prove that this problem has a solution,
s0 let us assume that u(t) is the optimal control and that it results from

a choice

& 0,0 =w (v), T. < t < T-T (5.1)

1 1

Other controls arise from different choices.

%}-‘{1 (0,£) = w(t) = w(t) + ew(t) (5.2)
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These other choices lead to solutions

7(x,8) = y(xst) + €Y (x,t) (5.3)

. Lo L : . - X .
where y(x,t) is the solution resulting from %’% (0,t) = w(t) atnd the
giveh ihitial and terminal data while ;"(x,t) is a soltition of the equation

(2.2) which vanishes identically in D, and D, and satisfies

0 T
ai.\l
£ (04t) 20 |
: Ti £ < T—T1 (5.4)
ﬂ . »
= (0,t) = wt)

From y(x,t) we obtain & control u(t) - ult) + eu(t) with

n 2y
utt) =t 5—% (1,t) (5.5)
We compute
T T .
[ oumae= [ ) + eve)’ae
0 0
T . T 4 T
= [ uwwar+ 2¢ [ awwac+ 2 [ Uwlae
0 0 0

and conclude that u(t) is optimal if and only if

T . a
[ u®u(r)dt =0
0

for all t(t) arising in the manner described above, i.e., from choices

'g% (o,t) as in equation (5:2).
Let Z(x,t) be the solution of

2 2
p(x)-a-—-g- - r-a-—g- = 0 (5.6)
ot ox

determined in D by data Z(1,t), %’% (1,t) given on the line x =1, 0:<t < T.
(Note that D is the intersection of the rectangle D: 0 <t < T, 0 < x < 1,
with the domain of determinacy of x = 1, 0 < t < T.)

Then we compute
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2 2 2
0 = .8 [,RE_ [ 233), &2y
1 4 2 9x & 3t9x

D at ox

_.32 3% _ 3y 3z
t 9x 3t 3Ix
= [. adiv
P Get) 2z 3Y , 32 9%
P 3t ot 9X 9%
Now apply the divergence theorem.
T " A
= - 92 3y - . Y
0 jo ( T35 (L) 5 (1,0) ¢ )
T N o,
- - . 8% 3y I3 'A
fo( Tat (O’t) 3x 0,t) Tat (0,t)
A, N T
.22 3y _ 3y 3z
3t 9x 2t 9dx
* = (t) 3z 3y 3Z 3y
x=E, pe Ly L2 X
at 3¢ 3x 93X
Ny T
_.%2 3y _ 3y az)
ot 9x at X
+ n Y]
x=, (1)  \ 3z ¥ , 8z 3
P53t 3t 9% 9%

We now put

97 » 37
5? (1,t) = ~-u(t), '5; (1,t) =0

On x = El(t) we are looking at the integral of

e )
X9t

a'\:
T —% }  dxdt

dxdt



N N ") 0,

3z 3y , 23y 23z Nxf 3z 3y, 2z 3%

(T t ox T T ot x) o o9 et T ax

n N N n,

& 2 32 3y 23y 32 3Z 3y 332 23y
Pl 3¢ 3x T ¢ 3¢ 3=/ T ° % 3t ocax

i i
© ©
O (o]
'o ! 212,
K. ™™
i
+
0
|Nltlil
+
©
[e]
o G
(2]
21
+
oI
L

L") L")
8y bz , 22
x Bt:l [c T
Ny

B
dy )
which is identically zero becuase ¢ 3%' + Sf-must be continuous across

X = gl(t) and it vanishes in DT'

Similar considerations apply on x = Ez(t) and thus we have

T YA 3y T a2 ¥
0 = jo T3r (LY 35 (Lodt @ - f . T ¢ (0st) 3 (0,t)dt
whence
T . T
[ uwima= [ 2 0,0%ma
0 0 £

~

For u to be optimal the left hand side must be zero for all U hence

T
2 0,0 w(war =0
0 t

for all w. But w is abritrary on (Tl, T—Tl) so we conclude

3z - -
Y (0,t) = 0, t e(Tl,T Tl)
Thus u is optimal if and only if
2 2
3z _n 3z - 3%z _ %7 _
3t (1’t) = u(t)’ 3% (19t) 0, P 2 T 2 0
2t X
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6. Vibrating String with Two-Boundary Control

One may also congider two-boundary control of the vibrating string:

2 2
p(x) % - T Q__% = 0
ot ax”
w(t) = -1 & (0,t) w(t) = v 22 (1,1) (6.1)
0 X ? 1 9% ’ *

Considerations similar to those presented above show that in this case
we have controllability if T > Tl, i.e., the time interval is halved
compared to that for single boundary control. The relevant diagrams are

shown here., The controls are unique if T = ’I.‘l and non-unique if T > Tl'

Dy Dy
Dor |
T, T=Tlv AW‘T>T1



CHAPTER II

CONTROL OF DISTRIBUTED PARAMETER SYSTEMS WITH

MORE THAN ONE SPACE VARIABLE

7. Approximate Controllability

When we pass to more complicated control problems, in particular
higher dimensional ones, we find that the comnstructive methods of the last
chapter fail us completely. In fact, to obtain any results at all we have to
content ourselves with what may be called approximate controllability rather
than the type of controllability discussed above for the string.

The concept of approximate controllability may be illustrated by the
example of the circular membrane. To make matters reasonably simple we
shall assume uniform deusity and elasticity properties. The relevant

equations then are

2 2 2

3 W 3w 3w
Py =TT tT Ty % 0
at 3x 3y
aw v
u(E;‘C) = T("a';; (g,t), -3-;7- (gst)) 4 (7.1)
where n(E,t) = is the unit outward normal to the cylinder

Hell? = > +5% <1 .
at a point (E,t) on its boundary.
0<t<T

We will give initial conditions

w(x,y,0) = 0, == (x,y,0) =0, (7.2)
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We consider the real Hilbert space H_ consisting of states w(x,y,T),

E

%%'(x,y,T) having finite energy

Ew) = 3 [ (o (E)? 4+ ¥y 4+, (awz}dxdy (7.3)

X +Y
In HE we use the inner product
3y 3w oV oW v dw
(vodg= [logr 3¢ T3 5x *° 3y oy § 9xdy (7.4)
x2+y2 < 1

We let R(T) be the set of all states w(x,¥,T), %%-(x,y,T) in HE which
are terminal states for solutions (in the generalized sense) of equation
(7.1) with initial conditions (7.2). R(T) is a subspace of HE called
the reachable set for time T,

We will say that our system is approximately controllable in time T
if R(T) is dense in HE relative to the topology induced by the energy norm,

Now R(T) fails to be dense in HE if and only if there is a state

v(x,y,T), %% (x,y,T) in HE

orthogonal to all states in R(T), i.e.

oAy M 3V dw 3y 2w -
[ Lo ryaliees + T s 3% + T 3y 3y } dxdy =0 (7.5)
x2+y2
for all w, gz e R(T).

Let v(x,y,t) have terminal values v(x,y,T), ~%% (x,y,T) and solve

82v 82v Bzv
7 T3 "tTT3 =0
At 3 3y
n
F 'l
v 3v =
(ax’ay ( ) 0 (7.6)
Ny

for x2 + y2 <1, t < T. Again we can only expect the equation to be

satisfied in a generalized sense.

We then compute
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O“f{‘a'y'(pazw-'tazw-razw) T_a_y_(azw azw)
D at a':2 axz 3 y2 3x T dtex Ixat

2
LA 3 Vv 3V v 3w _ 3w
( )+ ay ( oty dyat )

W v v oW 3V 3°v 3 v
+1o0 ( - ) + o (pS=5-1"5 - 1v5%) } dzdydt
Yy atoy ayot at atz aXZ ayz
_ 2 W _ 3w 3
T 9t Bx 3t 9x
IV dw 3W 9V
= f div - T T e T dxdydt
) X,¥st 3t 38y ot 8}'
3v 3w . BV 3w . _3v 3w
P ot 23t T X 99X t oy 9y
Now, using the divergence theorem, we get
- v dw, 3y 3w, 3V 3w
0 fzz Co3t 3¢ v 7ox ax ¥t 7oy ay>‘
X+ <1 t=T
- v 3w oV 3w 8V 3w
CPpae 3¢ Tox o= T T ox oy ) } dxdy
t=0
™ "
v 3w 3w .. 3 3V 3v
3D nz nz

The second term in the first integral vanishes because w = 0 at t = 0
and the second term in the second integral vanishes because of the boundary

conditions on v.

aw 9w nl
Then, since v (— , — ) = u

ax ? 3y
L)
v = v dw v w v 3w
] (oo fzz (P3¢t 3¢ T "% 3x T T3y ay) dxdy
an X+y f_l t=T

is true for all admissible u.
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Thus, R(T) fails to be dense in HE if and only if there is a
terminal state

v(x,¥,T), %{‘ (x,y,T)

with HE-norm different from zero such that T- =0, x +y =1, 0<tcx<T,

n
v dv 1Y . 2 2 _
N2
where v{(x,y,t) satisfies the equation (7.1) and the prescribed terminal

conditions. So the next question is == is such a solution of equation
(7.1) possible?

8. Uniqueness Theorem of Holmgren (as extended by Fritz Johm).

The tool which we need in order to examine this problem is the uniqueness
theorem of Holgren as extended by Fritz John.

A surface P(x,y,t) = ¢ is a characteristic surface for the partial
differential equation

2 2 2
p..a._‘zl_r(.@.‘.zl+i.;!.)=o (8.1)
ot 9x 3y

if and only if 1 satisfies

p% = T (R + P =0 (8.2)

FIGURE 10
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The conic surface C in the figure can be described in this manner., The
figure 1llustrates the case T = 2 ( %), the time required for a wave to
cross the membrane.

Consider now a domain D, bounded by two surfaces S0 c { (x,7,t)| :-:2+y2 = 1}

0
and S = { (x,y,t) | ¢ (%,7,t) = ¢ } where ¢ is smooth.

We will suppose that S is uniformly non-characteristic: there is some
e > 0 such that
2
)

p(h? - T(r? + D - (8.3)

fcr all (x,y,t) on S. Holmgren's uniqueness theorem then states:

A v i1

Let v(x,y,t) and ( 3% ° By )( be given for (x,y,t)e So. Then
n
2

there is at most one solution (there may be none) v(x,y,t) of (8.1) in Do

assuming these given values on SO'

9. Approximate Controllability of the Vibrating Membrane

' v dv i1
From this result we conclude that v(xz,y,t) and ( 3% ° 5—;) in a

set {(x,y,t)l x2 + y2 =1, to tx tl} determine any solution v(x,y,t) of
equation (8.1) in the region which is the solid of revolution formed by
rotating the two triagles shown in Figure 11.

+1
T gty
{0
FIGURE 11
The fact that for the v(x,y,t) of interest to us we have v =0 on

ot
xz + yz = ] shows that for x2 + y2 =1, § real

v(x,¥,t) = v(x,y,t+d).



=2( &
t=2( =)
£+
t1 N
~
£ =2 S
T ~
o
FIGURE 12
Then in regions Dt e ? Dt 4§, .48 our uniqueness theorem shows that
0*"1 c 1
v(x,y,t+8) = v(x,y,t).
Letting § vary we see that 8y =0 in a region D whose cross section
at to,t1+6

consists of two trapezoids as shown in Figure 12,
av

Letting tl + 2 ( %), t0 + 0, 6§ »0 we can show that 3t £ 0 in some
neighborhood of every point (x,¥, %), 0 < x2 + y2 2 1.
2
We conclude that Q__% =0 g.e. fort= £ . But then v(z,¥, %) = %(x,y).

ot
2 2N

T
Ny " £N
ox 3y y N,y

=) v is a constant, i.e., v(x,y, %) is a constant. But such a state

<

!

N

has zero energy. Since energy is conserved for v(x,y,t) we conclude that
the energy at time T is also zero. Thus v(x,y,T) is actually not in the
Hilbert space HE but is a multiple of the vector which we excluded from

2 ( U@ aE+y? <1 D) to form H.

Thus no non-zero vector in HE can be orthogonal to all wegR(T) = R(T) is
dense in HE for T =2 ( -:—). The same is true for T > 2 ( %), ‘of course,

Now consider T < 2 ( % Y.
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In this case the appropriate diagram is the one shown belew -~ . .
Note the configuration at t =‘§'. The characteristic surfaces emanating
from the boundaries of the sets xz + y2 <1, t =0 and x2 + y2 =1, t=T,
cut a smaller disk, which we shall call K, out of the disc x2 + y2 <1, t %‘ .
t=T
FIGURE 13 t=3
Let us pose conditions ©t=0
v(x,y,%-) =0 for all x, vy, x2 + y2 <1
v T - : .
< (XY ) 20 outside K

but %—} (x,y,%‘-) is not the zero function inside K. Then the energy

E(v,-g-) is clearly non-zero. We let this "initial" state evolve forward
and backward in time using equation (8.1) (which is reversible) and obtain a
solution v(x,y,t) of equation (8.1) which satisfies

- 0 - 2
v(x,y,t) = ‘5{. (x,y,t) = 0, XZ +y =1

On the other hand energy is conserved so the H_-norm of v(x,y,t), %‘é (x,y7,T)

is not zero. Thus, according to our earlier rgsults, we see that R(T)
cannot be dense in HE for T < 2( % ).

A number of interesting questions present themselves in connection with
this problem of the vibrating membrane. For example:

(1) 1If we allow the controls to be any functions in L2 ({x2 + yz 1,

0 < t<T1}) then does R(T) actually coincide with LZ[E,T], i.e., is R(T)
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closed, when T > 2 (&9. For the string the answer to the analogous

question is "yes,"
(ii) 1If controls are exercised only on some arc of the circle
xz + y2 = 1 for all t, what then is the control time which replaces 2 (%9.

Is it still finite? These are questions still to be answered,



CHAPTER I1I.

HILBERT SPACE FORUULATION OF THE DISTRIBUTED-PARAMETER CONTROL PROBLEM

10. Probleus With Control Function Occurring in the Differential Equation.

We turn now from this "geometric" point of view to one based primarily
on Hilbert gpace theory. We shall also pass, at least temporarily, from
boundary value control problems to problems where the control forces have the
form

u(x,t) = g(x)f(t). (10.1)
The function g(x), which we call the force distribution function, determines
the manner in which the control force is applied to the physical medium,
The function f£(t) is real valued and can be prescribed at will by the operator
of the plant.

Consider, for example, a stretched string attached to a rigid rod, as
shown in the diagram. The rod is pivoted at the end to some support and

we are free to move the other end.

string

(//”~“‘-// ¢—z—Eree end
pivot —“~11ﬁi;:v//ﬂ

rod Figure 14

If we assume that the rod is moved only through small angles, then its
configuration can be described by
xh(t), 0<x<1l, t>0,
Let w(x,t) denote the string displacement relative to an inertial frame
of reference and let y(x,t) denote its diéplacement relative to the rod. Then,

w satisfies

3 i}
pEm Ty = 0, w{0,t) 20 (10.2)
at ox w(l,t) = h(t)
Now
w(x,t) = y(x,t) + zh(t) (10.3)

and so, by substituting in (10.2),

a2 32
p( =T+ ") = 1(+F) = 0
it Ix

yielding
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2 2
o &L &L = xf(v) (10,4)
2 2
ot X
where
£(t) = -ph"(t). (10.5)
The new boundary conditions are
y(o,t) = 0, y(l,t) = 0. (10.6)
Let us consider the partial differential equation
2
9
px) 22 - Lo By = (L) (10.7)
atz 3x 3%
with boundary conditions
Aju(0,1) + 3, 32 (0,1) = o, NS
(10.8)
du - 2 2
Alu(l,t) + Bl ™ (L,6) =0 A1 + Bl # 0
We give initial conditions
u(x30) - uo(x), at (xso) -~ vo(x) (10-9)
d2u dv,, 9
and stipulate that both 5 and E;* lie in 1L.°[0,1]. It should be noted that
dx
this is a requirement somewhat stronger than finite energy. For finite energy

duO )
all we need is that o and Yy be in L7[0,1],

o

Again we wish to find £(t) ¢ LZ[O,T] such that the resulting solution
of the partial differential equation will satisfy

u(x,T) = 0, g—% (x,T) = 0. (10.10)

1l. Formulation of Problem in Hilbert Space.

One considers first the linear operator

1 9 u
L{u) = =~ o (r(x r (11.1)

defined on the domain in L2[0,1] consisting of functions u(x) whose second
derivatives lie in L2[0,1] and satisfy the boundary conditions (10.10).
If in L2[0,1] we employ the inner product

1
U,V = [  u)v(x)e(x)dx (11.2)
0

we make L2[0,1] into a Hilbert space H and, with respect to this inner product
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the operator L can be showm to be an unbounded self-adjoint operator which
is positive definite or positive semi~-definite, depending upon the boundary
conditions. In order to make our presentation simpler we will assume that
we are dealing with a case where the operator L is positive definite. 1In
this case L possesses a sequence of eigenvalues

0 < )\l < }\2 < esse< An < An“'l < soe (1103)

and corresponding eigenfunctions =¢1ﬂx),'¢2(x),.::‘which form an orthonormal
basis for H relative to the inner product described above, i.e.,

1
fo 0 (X9, (o (R)dx = &, (11.4)

Given any y(x)e L2[0,1] we have the unique representation

-]

v(x) = kgl Py by () (11.5)
where 1
v, = fo ¥ (%) ¢y ()0 (x) dx. (11.6)

We let u(x,t) be the solution of the equation (10.7) with the given initial
and boundary conditions. We put

]

u(x,t) Bk(t)¢k(X),

k=1

8

uo (X) uk¢k(X) s

VO (X) = z Vk¢k (X) H]

k=1
gx) = I v (. (11.7)
k=1
Proceeding formally we find that
a’s,
;:é—-i- AkBk = ka(t), k=12,04s (11.8)

ag

with initial conditions Bk(O) = U, EEK (0) = Vy e We use the variation of

k

parameters formula to integrate these equations and we find that, with

“r V.
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v
Bk(T) = Wy cos(wkT) + Eﬁ sin(wkT)

T v

+ f Z%E sin(uw, (T-8))£(s)ds
0 'k
dBk
rra (T) = Myl sin(wk’l') + v, cos (wkT)
T
+ f Yy cos(wy (T-s))£(s)ds. (11.9)
0
Consequently, if we wish to have
dBk
Bk(T) il v (Y = 0, k = 1,2,3,.0¢
we must have
T MW Vie
[ sin (u (T-s))f(s)ds = -——= cos(u, T) = — sin(w, T)
k Y k ¥ k
0 k k
T My Vk
f cos (w, (T-s)) £(s)ds = sin(w, T) - = cos (w,T) . (11.10)
0 k k

12, A Trigonometric lMoment Problem,

We see then that control can be effected if we can solve a certain

trigonometric moment problem, namely the one given above, for a function £f(t)

in LZ[O,T]. It is easily seen that the above problem is equivalent to

T H, @
f sin(mks)f(s)ds - £k

0 Yk

T Vk

f cos(mks)f(s)ds B - -

0 Yk

or

T dw.s H, 0 v

[ e k f(s)ds = Kk _ i £ N
0 Yk Yk

T ~-iws U, 0 v,

[ e Feeras = =5 +1 £ = a, (12.1)
0 k Tx

With the assumption which we have made on the initial conditions we readily see
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2 2 .
that ]ck| *+]dkf < o provided

lim inf klykl >0 (12,2)
koo
%
which assumption we now make.
In the abstract a moment problem has the form
(pk,f) = ck, k= 1,2,3,.00 (12.3)
where the pk are certain elenents of a separable Wilbert space H and f is
a fixed element of that space. The ¢ are square-summable,
Now if the Py form a complete orthonormal set we can solve this problem

quite readily by setting

£ o= ] P, »
o1 “kPx
for then - o
(Pka) = ('Pk9 Z CR,PSL) = 2—2-:1 c (Pkapz) = ck.

In the moment problem at hand, this is the situation we would face if we
had 9 = k and we took T = 27, This, however, is true only when we deal with
a uniform string.

The elements Py el form a Riesz basis in ¥ if there is a complete
orthonormal set {gk}<g;H and a linear transformation T:H + H with both
T and T™* bounded such that

™, = P> Kk =1,2,... (12.4)

Suppose now that the Py form a Riesz basis and we have a moment problem

(pk,f) = oo k=1.2,:0.
Then
(Tp, ,£) = =
Pk’ ) = ck
(B, ,T%f) =
pk’ ck
This last problem has the solution

[~ ]

47
T*f = ) ¢ p (12.5)
k=1 kk

and thus we obtain for £

*See D. L. Russell: "Nonharmonic Fourier Series in the Control Theory
of Distributed Parameter Systems'. J. Math. Anal. and Appl., Vol. 18,
1\}0' 3’ 1967, Pp’ 542_600
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(-] (-]
-1 v -]
£ = (T%) ] oeP = I ¢ (TP
ke KE O glp k
We put (T*)-IB = q Then
k k*
_ N, -91 - 4 o "'1 .
(Prsqy) = (Tps(TH) "py) = (p,T*(T*) "p,)
| (B aPp) = Sy
The {qk} are a biorthogonal set for {pk}. Our control problem now reduces

to the question of whether or not the functiors Sin(wkt) » coslw ), k = 1,2,3,...,
or eiiwkt, k=1,2,3,... form a Riesz basis in L2[0,T].

13. Density, Asymptotic Gap and the Homent Problem.

This problem has been studied in great detail by a number of prominent
mathematicians, among them Paley and Wiener, Laurent, Schwartz, Levinson, to
name only a few. We shall summarize their results without giving proofs,

Let {Gk}, k assuming integer values between =» and +c, be a double

ended sequence of real numbers. If

1im 6E-exists and D = 1lim 6k> > 0 (13.1)
[k|se "k || »07k

the sequence {8 } is sald to possess a density D. If
lim inf (@ -9,) =T> 0 (13.2)
'k!-*m k+1 k

the sequence is said to have an asymptotic gap I'. The properties of the

set of functions {elekt‘ - o <k <} in LZ[OQT] depend decisively upon the
relationship which T bears to the density D and the gap I's We shall
assume for the moment that such a gap and dgg;%ty exist, )

If T < 29D it is known that the set e is excessive in L"[0,T].

It is not in general possible to solve the moment problem

jT eiektf(t)dt = T e %< @ (13.3)
0 R L% .
by any choice of £(t)e L2[0,T].
ie, t 10t

If T > 21D the set {e k } is deficient in L2[0,T], the functions e

span a proper subspace H of Lz[O,T]. Whether or not they form a Riesz

basis for this subspace H depends upon the gap ' If T > g% » wWhich is

o s

certainly true if T 3

» this is true. In this case the moment problem (13.3)
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can be solved by a function £(t)eld and there is exactly one such solution in
H. However, H is non—empty in this case (in fact, it is infinite-dimensional)
and any function f(t) + f(t), f(t)eH s also solves the moment problem.

The case T = 27D is by far the most interesting. It has been shown that

io t
the set {e k } forms a Riesz basis for LZ[O,ZWD] provided
lin swp o, - & |5 7= . (13.4)

i
The constant on the right cannot be replaced by any larger number. If this
holds then the moment problem {(13.3) has exactly one solution in LZ[O,ZnD].

14, Reformulation of the Control Problem as an Eigenvalue Problem.

Now, we must relate all of this to the moment problem

T iw, t U, W v
[ e “fmar = =& o5 K oac
0 Yk i
(14.1)
T -iw, t H, . v
[ e K" fde = Xk 4y K o dy
0 Tx Yk

which, as we have seen, is equivalent to the control problem originally
posed. Cledrly what we need is more information about the w , i.,e., the
frequencies associated with the normal modes of vibration of solutions of
the partial differential equation

2
o - 2 ew )= o (14.2)
ot
with boundary conditions
Ju - 2 2
Ayu(0,t) + By 2 (0,1) =0, Ay + By # 0,
(14.3)
Ju - 2 2
Alu(l,t) + B, 3% (1,t) = 0, A] + B] # 0.

If we put

w o= HP@e® u, x* = f L s T

p(&)
one can see, with a little calculation, that a new partial differential
equation
azu 82u
— -5 r{x)u = vy(x)£(t) (14.5)

9x
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is obtained on an interval 0 ¢ x ¢ g, where

1
. = 2@ 4, .
fo (o) X (14.6)
The new boundary conditions are
2 2
u(Ot)-r-b (0,t) = 0 a.+b, # 0 b, =0
0 ax 0 0 i (14.7)
- 2 2 . -
u(l t) + bl 3 L (1,t) = 0 ay + b1 # 0 if Bi = 0,

This transformation has the effect of "straightening out" the characteristics
of the partial differential equation.

The eigenvalues of the operator

2 a.u(0) + b.u"(0) =0
L(u) = - é*%'- r(x)u, 0 0 (14.8)
3x alu(l) + blu'(l) =0

on LZIO,Q] have been studied in great detail. See, for instance, the books
by Birkhoff, Rota and Tricomi. Three types of problems should be distinguished:

(1) bo =b; =0 (equivalent to By =By = 0)
The "prototype" operator is - a_g., u(0) = u(g) = 0, with eigenvalues
22 0%
%k = 5—%— , frequency %k = 5% (14.9)
2
k = 1,2,...
(ii) b0 = 0, b1 # 0 (equivalent to Bo = 0, Bl + 0)
Prototype operator: 9
- ﬁ-% N u(0) = 0
9% u'() =0
Eigenvalues: . (k +”_.)?. 2
}\k' = 2‘2 ’ k = 0,1,2,.0- (14.10)
(iii) b, # 0, b, # 0 (equivalent to B, # 0, B. # 0)
0 1 2 0 1
Prototype operator: - 2—%% , u' () =u'@®) =0
3%
Vv kzﬂz
Eigenvalues: A& = 22 s k= 0,1,2,04. (14.11)

In all of these cases one can prove that the eigenvalues Ak of the original

operator L{u] are related to those of the prototype operator by asymptotic
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relations of the form

n
Ak = Ak + (1)
whence
- % -y afrocky = i
we = YA Fo@ = w \fIHOo(T) = ¢ @+0())
A A
k k
= o Ly o L
= wk+0($ ) wk+0(k).
k
This shows that the set {i@k} has the same asymptotic gap and density as
the set {j_-_imk}, i.e., D = %-, r= %.
The fact that the remainder term is ©( %’) enables one to prove that
Ho t ) 410 t
{e } is a Riesz basis for L°[0,T] if and only if {e } is a Riesz

basis for that space and if there is any excess or deficiency it must be the

same in both cases.,

15. Discussion of the Three Cases of the Eigenvalue Problem.

Now let us look at the three cases individually:
N " n n n
) s | , | ) w3
(i) 20, = .I-C-T-L i i i i 4 1
k % =2n o 0 X 27 3n
L 2 L % L
Figure 15
il 2
Gap = T density = T
Critical interval length = 27D = 27 %-= 22, Now it is well known that
+ 0t )
{1,e } is an orthonormal basis for L“[0,2¢]. We are missing one element,

T 2
namely 1., So, in this case {e } spans a subspace H of L°[0,22] whose

orthogcnal complement has dimension 1.

+iw, t
Let {qk, k = 41, + 2,...} be biorthogonal to {e } in H, Then the
moment problen iwkt
e, £(8) = ¢
-iwkt
{e » £(B)) = d (15.1)

k

is solved by £(t) = 2 ¢ 9y + qu-k and we obtain thereby the control of least
k_

=1
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LZ[O,ZZ] norn bringing the given initial conditions to zero at time T = 28,
However, if H is spanned by q(t), then

=18

f(t) = ¢ *+ da_, + aq(t) (15.2)

k=1
o real ‘
is likewise a solution. This torrespords to the fact that a constant force
acting on the uniform string fixed at both ends over a tiﬁe interval 2%
accomplishes exactly nothing. For the non-uniform string q(t) need not be a

constant, however,

(k + ':!2")17

1) o =
L

1{ = O‘l’z”..

[ - i [} (i ")

i
=5m =37 -1 0 _= 3 om
22 22 2% 22 24 28
Figure 16
A
‘ o Ha t + -15% t
The unitary operator £(t} =+ f£(t)e carries {e } into {i,e }
iimkt

which is an orthonormal basis for LZ[O,Zl]. It follows that {e

+iw t
2 —
is an orthonormal basis for L'D2m%] and that {e k } is a Riesz basis for

1210,22].

In this case the desired controls exist and are unique,

}

wii) B = %} , k=0,1,2,00.

In this case the Fuy look like

ol PO T

ok L8
L
Figure 17

! le |
=2 i 2n
L A 2

provided none of the AP are equal to zero. In this case we have an excess of
one.
It turns out that we can solve all but one of the moment equations.

What this means in practice for the prototype problem
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2 2
L2 . 22 - gwEm
ot ox
BLo=2w=o (15.3)
t
x=0 x=1

t=0

Figure 18

is that all vibration can be stopped in time T = 22 but the string, as a body,
may have moved to another location, over which we have no control. It is not
hard to show that if we take T > 2% we can determine the final position as

we wish.

What is the meaning of the critical interval length T = 22?7 We remarked
earlier that the change of variables taking us from equation (14.2) to
equation (14.5) strightens out the characteristics. What is more, the slope
of the characteristics is made equal to 1.

In all of this the time variable is left unchanged. So the picture is
sg?ething like this: 1 0 I3

®

—— . —— —— =t

|

!

|

|

|

!

|

l
N

>

A 2

Figure 19
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2 2 2
971 ) Ju 37 u 37u 3y

p(®) —5 = == (p® =) = gXE() - = —5 + r(x)u=g(x)f(t)
22 ox ax & 52 oxc?

Thus the control time, T = 22 is just T = ZTl, the same time as was

required for control in our earlier theory.

16. Correlation of the Present Results with Those of Chapter I.

It seems appropriate therefore to ask: what is the relationship between
these two theories--~the one being geometric, the other algebraic?

We can readily answer this question for the partial differential

equation
2
p(x) %-t-g- - 2 6@ ) = s@E® (16.1)

with boundary conditions

Ju - ..3_1:1 =
ayu(0,6) + by =% (0,£) =0, au(l,e) +b = (1,t) 20 (16.2)
with the assumption that b1 # 0. We will relate this to
82u 9 au
p(x) ;:5 - 5 @ 7)) =0 (16.3)

with boundary conditions

du - du =
aou(o,t) + bo P (0,t) = 0, alu(l,t) + bl Py (1,t) £(t) (16.4)

From our study up to this point we know that (16.1,2) is controllable in
time T if T > 2nD = 22 and that we can find a control £(t) reducing initial

conditions

©

uo (X) = 1’21 uk¢k (X) 2
W0y =y ) = ] v () (16.5)
t ’ Vo oy KK .

to the zero state at time T if and only if we can solve the moment problem
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T , —ukwk Vk -
fo sin (w, (T - s))f(s)ds = Y. cos(w,T) - ';; sin(w T) = ¢

T HyW Y% -
fo cos (w (T - 8))f(s)ds = 3 sin(wkT) - ;; cos(wkT) = dk (16.:6)

Moreover, we have seen that if pk(t), qk(t) are functions forming a biorthogonal

set relative to sin(w (T - s)), cos (w (T - 8)), i.e., if

T

f | sinle (T ~s))p, ()ds = 6,
T -~
J . sin(u, (T -s))q,(s)ds = 0
T ~
f o cos(wk(T - s))pz(s)ds =0
T ~
/ . cos (w (T = 8))q,(s)ds = &, (16.7)
then the series o
£(0) = 1 (gp () + dq (1)) (16.8)

k=1

converges in the LZ[O,T] norm and yields the desired solution of the moment
problem.

Thus far we have given no constructive means whereby the biorthogonal
functions pk(t), qk(t) can be constructed. We will do this now, showing
that they arise out of solution of the boundary value control problem
(16.3,4) for particular initial conditions.

Let u(x,t) be a solution of the boundary value control problem (16.3,4)

00 Bu o0
u(x,0) = u (%) = ) 1o (%), == (x,0) =v,(x) = Y v ¢ (%
0 ey K%k dt 0 w1 Y%k
u(x,T) = gz (X:T) = 0, (16.9)

and let w(x,t) be a solution of
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2
3 W 3 v
— o— — = 0
p (%) o2 e (P00 ™ )
aOW(O,t) +b0 %W; 0,t) =0, a w(l t) + b (l t) = 0 (16.10)
W0 = 1 a @, w0 = I na . (16.11)
k=1 k=1
Now we compute
2
9 9 9
0 = [ wixn Es(x)-—-} = 57 G 32| dxde
D ot

1 T 2 T 1 N
[ o [ weo &5 aax- f [ vt @ ) e
0 0 at” 0’0

1 T azw 1 3w t=T
= p(x = ulx,t)dtdx + % "‘"W -y dx
[ e [ =5 ulx,n) [ e 2y
0 0 3t 0 t=0
-IT fl 2 2y ux,t)) dxde
0 0 3% PLX % ulx, X
T F‘ x=]
-f B(x) W -g-‘-;— - p(x) -g-:{-\x:‘ dt
0 ' x=0

on integrating twice by parts, the integral with respect to t in the first

term and that with respect to x in the second term. Now using the conditions

= %—% =0 at t = T, and the boundary conditions (16.4, 16.10) on u and w,
we get
0 = [ [ le """BZW- 2 pm | u(x,t) axde
S TS ax T ox ’

1 _
- fo p (%) -g—% (x,0)w(x,0) - u(x,0) g‘: (x, 0)] dx

T —
- [0 p(L) -E-]l.- (alu(l,t) + bl 8 (1 t)’;} w(i,t)dt

From this we have
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T
[ pE()w(l,t)de
¢}

1
= [ o® Ex 0) atk,m %%(X,O)w(x,o)] dx
0

whence, using the eépansians noted earlier,
T

f p(ME()w(l,t)dt
0

1 o 0
= o (x) 1, ¢, () I n.¢,(x)
fo Ekzlkk ) j=1 33 )
( Z Vi 8y (%) ( j=l ¢ (x) )] dx = ): (uknk +v,5,.)

(16,12)
Now let us put uy, = 1, 311 other u, and all v, = 0. Then
: ko k k
T
[/ p(DE(t)w(l,t)de = iy
0 0
We put nj = 1, all other n, = 0 and all Ly, = 0. Then
wi(x,t) = cos(mjt)¢j (x)
and thus
T
/ p() ¢, ()E(t)cos(u,t)dt
o 3 3
) 1i£ 35 = kO
(16.13)
0 if j # ko

I1f we put all = 0, ;j = 1 and all other gy = 0 we have

w(x,t) = -(;;— sin ()0, ()
h|

and we see that
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T p(De, (D)
f —1— sin(u €)dt = 0 for ll §.
0 3

We conclude that if f£(t) is a boundary value control which brings the
initial conditions

u(5,0) = ¢, @, -%% (x,0) = 0 (16.14)
0
to rest at time t = T, then the function hk (t) = p(l)q)k (1)£(t) has the
0 0
property
f T
h, (t) cos{w.t)dt = §
o Xo 3 kod
T for all j {(16.15)

f (t) sin(w,t)dt = O
o ¥ 3

We can obtain & fuhction hy, (t) sarisfying

0
N |
h, (t)eos(w.t)dt = O
o %o i
for all j (16.16)

TA
[ (t)sin(w.t)dt = §

0 ko j ko3

by finding the boundary value control £(t) which reduces initial conditions

u(x,0) = 0, 'a_E(XsO) = ¢k0(x) (16.17)
to zero at time t = T. In this case we have
p(l)4>k (¢))
hko o £(t). (16.18)
‘0

Now the boundary value controls can be computed by applying numerical
integration as indicated in an earlier section.



CHAPTER IV,

THE BANG-BANG PRINCIPLE

17. Linear Differential Equations in Hilbert Space

Let H be a Hilbert space and let y, b be vectors in i, u scalar., Ve

consider a process described by a differential equation

4 .
e Ay + bu (17.1)

where A is an operator, in general unbounded, defined on a domain A which is
dense in H,

We are going to assume that A is a normal operator, which means that
AA%* = A*A, In addition we will assume that all of the eigenvalues A of A are
of single multiplicity, i.e. they correspond to exactly one eigenvector ¢eli,
and we will assume that all of these eigenvalues lie in some left half-plane
of the complex plane. The normality of A ensures that the eigenvectors

form an orthonormal basis for H. Thus each yei! has a unique representation

©

y = ) n¢ (17.2)
=

{nk} square summable and conversely each such series represents an element of
He. A is the set of all y defined by (17.2) such that AycH, i.e. such that

the sequence {A n, } is square summable.

n
k'k
Let us consider some examples. Ve take H to be L2[0,1]; i.e. all functions

1
y(x), 0 < x <1, such that f ] v (%) Izdx < o, TIf we take A = %;'(p(x) %i)
0

on a domain A consisting of functions y(x) having L2 second derivatives
(y/(x) is absolutely continuous and y"(x), defined almost everywhere, is
square integrable) and satisfying appropriate boundary conditions (e.g. y'(0) =
y'(1) = 0) we obtain a self-adjoint, and hence normal, operator defined on
L2, all of whose eigenvalues lie in the non-positive real axis.
If we wish to consider something like a string
2

9w 1 3 9w\ _

o2 | Pl ax (PO 5y) = stou®) (17.3)
we let

Ty = - 5-(;5)- = ow ) (17.4)
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Then, with appropriate boundary conditions T becomes a positive self-adjoint
1/2

operator and has a positive self~-adjoint square root T°' %, We put Wy =W,
_ v .
w2 = It and obtain
w 0 I W 0
[ 1y 1
dt (W } - (—T 0>( W, )+ ( 8) u(e) (17.5)
2 2
The letting
2 AT ~1iT Y2
we have _iT-1/2
1/2 —— B
y iT 0 y 2
d 1) _ /Y1
aly = 1/2)[ y 172, Jv Q747
2/ 0 -iT 2 iT g
2
which is of the form (17.1) with
it 0
A = (17.8)
0 -iTllz

being anti-hermitian, and hence normal. It should be emphasized that
solutions of this first order equation may only represent generalized
'solutions of the original partial differential equation, (17.3).

Consider now the solutions of (17.1). 1If A is normal and all of its
eigenvalues lie in some left half plane the operator equation

ay
at

has a unique solution Y(t) which we denote by eAt, defined for all t > 0 and

AY, Y() =1 (17.9)

strongly continuous, i.e. eAtyO is a continuous vector valued function for
each yosH. The precise sense in which Y{t) = eAt satisfies (17.9) need not
concern us here, However, if yOeA = dom A, eAtyo does provide us with a bona

fide solution of

4 .
3t Ay (17.10)
y(©) =y,

For the first order equation derived from the string partial differential
equation we obtain a solution of the homogeneous equation if the initial
state y has finite energy.

For the inhomogeneous equation, if u(t) is integrable we can form an

integral in H:
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t
y(t) = eAtyO + f eA(t-S)bu(s)ds (17.11)
Q

and call it a solution of (17.1), If bedomA (true, for instance in the
case of the string equation) then the right hand side of the above equation
can be differentiated and eq.. (17.1) is actually satisfied.

18. Optimal Control Problem for Differential Equations in Hilbert Space

So much, then, for a little background on linear differential equations

in Hilbert space, We will now pose an optimal control problem, in fact a time
optimal control problem, for such systems and see if we can establish a
"bang~bang" principle.,
Let a point yosH be given and let N(e,yo) denote the set
N(e,y,) = {yeHIIIy-yOII < e}, (18.1)

We will assume Oéﬁ(e,yo). We place constraints on the scalar control function
u(t)
-1 <u(t) <1 (18.2)

and we pose the problem: Find u(t) defined and measurable on an interval
[0,T] so that the solution y(t) of

%Jti = A9 + bd, 9(0) = 0 (18.3)

satisfies ?(T)eN(s,yo), i obeys the above constraints, and no control u
obeying these constraints brings y(T) to N(a,yo) in.a time shorter than T. .
We remark that the time optimal control problem can be posed in many
other ways. We could ask that ¢(T) = 0, for instance. This problem is
somewhat more difficult as we will indicate later.
Our development now follows a familiar track: We let R(t) < H be the

set of attainability from 0 at time t: i.e,

t
R(t) = {yel| y = eA(t—s)bu(s)ds,
0

-1 < u(s) < 1} (18.4)

It is easy to verify that R(t) is closed and convex for each t.

Our main interest lies in characterizing the optimal control {(t) and
so let us assume that our time optimal control problem has a solution. If
we know there is some control u(t) bringing 0 into N(e,yo) in time Tl (the
problem of controllability, discussed earlier) then it is not too hard to
show that there is a time optimal control in our sense., But this would take

us somewhat away from what we really want to do.
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So we assume ?(T)sN(e,yO), so that R(T)r\N(e,yo) is not empty and we
assume R(t){\N(e,yo) is empty if t < T, 9(T)88N(e,yo), otherwise we could
reach N(e,yo) earlier,

Proposition. Let yeR(T). Then

ReW(D) - yps 73 2 119D -3y |2 =% (18.5)

Proof. Suppose y were such that Re(§(T) - y,» ¥-y,) = llg(T) - yollzr-6,6'> 0.
Let n = Ay + (1=-A)$(T), 0 < A < 1, ' Because R(t) is convex neR(t).

We compute
lIn = 95117 = Qs + DD =y,
Ay = 3 + ANOM =5 = 23yl + 2QNROD - 3y, 7
+ =029 - yyl12
= 2 y5p11% =119 = 55115 + 279 =55l 1% + 2220 ] [9D-y,|? -

+ @029 -y l17 = -8 228 +|9D - 3,15 +l19(D - y,l1?

= ~208 + 2226 + ||9(T) - Yol 1%y + 2.

For A near 0 and positive we have
2 2
”n'yO“ <€
and thus n lies in the interior of N(s,yo). But then we can show very

readily that R(t)(VN(e,y,) # § for some t < T, a contradiction, Therefore,
Re(I(D) = ¥5s ¥ = 75) 2 19D = y,l?
as claimed, whenever yeR(T), Thus
Re(I(D) = vp, (7-¥g) = (D) = yp)) = Re(S(D) = ¥g, Y-9(D) 2 0, yeR(e) (184

Now let u(t) be an arbitrary admissible control and y = y(T) the point in R(T)

corresponding to this control, i.e.,
T
vy = [ AT ®py(syas (18.7)
0

Then T
Re(H(D - 355 9D = ReO® -3, [ P Ppcuce)-0(s))as)

0

T
=re [ @M -y, TP us) - ae))as 20
0
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If this is to be true for all admissible u(s), we must have

A{T=~s)

u(s) = =sgnRe(9(T) - Yoo © b) (18.8)

for almost all s in [0,T]. Thus, loosely speaking, (i(s) assumes extreme

values whenever
Re(9(D - 55 TPy #0.

Now let A have eigenvalues

Al,AZ,AB,...,Ak,.,, Ak = By + ivk, (18.9)
and a complete orthonormal basis of eigenvectors ¢l,¢2,...,¢k,... in H.

-

We let ) -y, = L T
0 & k'
b = Y B¢
k=1 k'k
T = g =¢ (18.10)
Then
- © (u, Hv, )o
@@ - 34 T = PR L

and we are talking therefore, of the set of points o where

© u, o

_ k
p{o) = Z ngke (cos v O + isinvkg)
k=1
has a non~vanishing real part.

Now let ha

_ .r i I o . o1 PR % R DA k
Ck - Ck + iCk’ Bk - Bk + lBk ? Re(p(o)) el (CkBk CkB k) e cos vkc

M, 0

To get more explicit results now we have to begin to treat particular cases.

19. Hyperbolic Problems

The typical hyperbolic problem comes from a second order equation

dzw
dt?
where T is positive and self-adjoint. We will suppose that T has eigenvalues

0 < Al < xz < A3... (19.2)

+ Tw = gu (19.1)
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all of single multiplicity with corresponding eigenvectors ¢k.

As we have seen, we can go to a firvst order equation

st/ 2 0 177 1/2
&y 2
= y + - u (1903)
dt 0 _1T1/2;> g2
2
The elgenvalues now are i_i(kkllz) = i_imk and the elgenvectors are

2N 0
s seve k = 1,2,-.1. Thus uk = 0, v = U.)ko If we let

0 b k
g = 2 Y, ¢, then
oy k%K
~1/2
- - i
b = -1/2 = 1 7 * o , (19.4)
\\ it %o k=1 k \ 0  \ o/ )
2
1f we let © ¢k 0
(D ~y,. = ) ¢ + T, (19.5)
0 = k(o ) k( b

(which it must be if it is to correspond to a real state for the original

partial differential equation) then

. o -1y iw, o iy, _ =iw o0
@D -y, ATy = e © o+ 3E Te k)z (19.6)

and the real part is given by

i T
S Y1.5
kk coS ®, G =~ kk sin w, 0 (19.7)
Wy k Wy k

Thus, whenever the above expression does not vanish

Re(p(s)) =

2 T

Y4, & Y, C
4(s) = 4(T-o) = sgn K’k cos w, o + Kk sinw, o (19.8)
Wy k Wy k

Now the theory of non-harmonic Fourier series, used previously, enters the

picture again.

Let us assume that no Y = 0. This is the condition for approximate
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controllability. Then, since Y(T) =~ yo # 0, not all T, are zero and thus

i r
Yeh k. Yk

not all of the coefficients s are zero,
wy Wy

Let us suppose that the frequencies w

Xk have a finite non~zero density D
(e.g. in the case of the string we have already seen that D =-% ). (This type
of density is typical for hyperbolic equations with one space dimemsion.) It
is then known (see Paley and Wiener, Levinson, etc.) that on any interval
[0,T] such that T > 2#D it is not possible that

Yk;i cos w, 0 -+ YkC; sin w0

Wy k Wy k

vanishes identically. Thus, if it is not possible to reach N(s,yo) in

time T < 24D, but this 1s possible in some time T > 27D, then the time
optimal control QG(t) must assume extreme values in some set of positive
measure contained in [0,T]. lMore than this we cannot say. In some cases
this result can be slightly strengthened to T > 27D but if T < 27D we cannot
be sure that a time optimal control ever assumes extreme values.

Hyperbolic problems in two or more space variables frequently have the
property that D is infinite. 8o in these cases we do not obtain anything
that we could really call a bang-bang principle since we cannot be sure that
Re p(o) does not vanish on an interval, no matter how long that interval is,

There are oscillatory systems that are not hyperbolic in the sense used
in the theory of partial differential equations, (i.e. the equations do not
have distinct real characteristics, etc.).. For example, consider the simple

beam equation

2 2 2

3w 1 3 3 W.
s+ —== = (p(x) ™) = g(x)u(t) (19.9)
32 P 52 3%
2 2
1 3w
Tw -_— (p(x) —) (19.10)
p(x) 3X2 3X2

is positive self-adjoint if appropriate boundary conditions are given
(esge, w(0) = w'(0) =0, w(l) =w'(l) =0). So the analysis proceeds as

before and we look at

i T
Y351, Y, Z
Re(p(o}) = ( kk cos w0 + g k sin wkcr) (19.11)
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In this particular case, however, we have W, = O(kz), k »+ « yhich gives a
density D = 0, This implies that Re(p{o)) cannot vanish identically on

any interval. So in this case we see that a time optimal control G(t) must
have extreme values on a dense set in [0,T]. However, despite strenuous
efforts it has not been possible to show that the set of extreme values has
full measure., (It clearly has positive measure because Re(p(o)) iis a

continuous function.)

20. Parabolic Problems

The usual example cited for a parabolic equation is

dy
dt

with A negative self~adjoint, as in the heat equation

= Ay + bu (20.1)

9y 321
--E - 2 = g(x)u(t) (20.2)
ot 2
If we look at the eigenvalues of A = = 3—%- in the case of the heat

equation, or any negative self-adjocint A, ghey lie wholly on the negative
real azis.

This is an extreme case of a more general situation which we also call
parabolic. Let us suppose that A is normal and has all of its eigenvalues in

a sector:
A an eigenvalue of A=3 Aefu ¢ C{[arg(u-uo) - v[g_%- - 8} (20.3)

where § > 0. Graphically things look like this:

\Im

Re

“

/

Figure 20
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If we assume a particular mode of energy dissipation for certain oscillatory
systems we obtain equations parabolic in this sense. Suppose T is self-

adjoint and positive., Consider a second order equation

R A A gu (20.4)
dt2 dt

(a 0O buf small)

. _ v _
which with w = Vis dr W, becomes
s Wy 0 I vy 0
-a:-t— . - " -aTl/?_ w -+ g u (20 05)
2 2
Now put
LAY I I Y1
jm‘m At i e e
v, -a’l‘ll 2+i\/ l--a2 T}'/Z -aTl/Z-i \/1-a2T1/2 Yy
(20.6)
and we obtain
/2, 0/ .2 1/2
4 ¥y ~aT " "4iV 1=-a~ T 0 71
dt = e B TS
Yo ' 0 —aTllz-i\/ 1-a° /2 v,
_iT—l/2
— 8
/1
+ 2V 1-a u(t) = Ay + bu. (20.7)
iT-l/Z .
2\/ ].-a2
1/2

Now 1if T has elgenvalues Ak >0, T has eigenvalues W = ‘/ }‘k and A,

as just indicated, has eigenvalues

2
=auy + i\/ l-a w0y

which lie in a sector as described earlier.
It is interesting that this type of damping is well known to engineers
(though they do not use the equation we have just developed) and is known

as structural damping.
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So let us now consider a system

& .
& = Ay +hbu (20.8)

where A is a normal (unbounded) operator whose spectrum lies in a sector

{“liarg(u-uo) - nl < %-—

This general equation will include both the heat equation and the structurally

s, Ko real, § > 0} (20.9)

damped oscillator which we have described above,
We now take a path

= = e = 33T ‘

T =T(6,u)) = {u|arg(u-uy) = 5+ 6 or arg(u-y,)== - 6} (20,10)

where My > ¥ and 0 < 8 < §, This path is shown in the diagram below.

~,

i

(see Kato's book)

\

Figure 21
The normality of A can be used to show that if u is a point on the path T

e1-0"M] < x@+u) (20.11)

where X is some positive constant. Using this one can see that the operator-

valued integral
A f Y arn Tl

is uniformly convergent to eAO if ¢ lies in g get -
{oflo| 2 04 larg o| <o-4

where 00 >0 and ¥> 0.
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The function

p(O) = (D) = 3y, %) =22 [ 9@ - v, QI-A) Tb)do (20.12)
: 0 27i I 0

is uniformly convergent in the same subset of the complex plane and therefore

represents z holomorphic function there. Now we let 9gs ¢ tend to zero, let ©

tend to 6 and we have p(c) holomorphic in the interior of

{o]||arg o| <8, || > 0}
which includes all of the positive real sxis.
Then Re(p(o)) 1is real analytic for real sy and cannot vanish on a set
of positive measure unless it vanishes on the whole positive real axis.
But if (9(T) - Yo» eAOb) = (§(T) - Yoo eAcb) has real part identically
zero for ¢ > Q0 then the attainable points

eA(t-s)

t
v(t) = f bu(s)ds

0
all have the property that (9(T) = Yoo y(t)) is purely imaginary, and thus
denies that the system is even approximately controllable (i.e., that one
can achieve a dense set of points in L),

So if we have approximate controllability (and this question has been
studied at length by Fattorini and others) then a time-optimal control,

(in our sense) is always a bang~bang control for a parabolic (in our sense)
system.

I will indicate only very briefly what happens if we replace our target
set, a neighborhood of Yos by the point Yo itself., To get results of the type
we have been studying oune then must establish the existence of a vector neH
such that for all yeR(T)

(N 9( -9 20
Then (n,9(T) - z) = 0 defines a supporting hyperplane.

In finite dimensional spaces the convexity of R(T) implies the existence
of n right away. But if H is an Infinite dimensional space as it is for
distributed systems, this is no longer true in general and it is a rather difficult
problem to determine just when it is true. In our problem we do not need a

supporting hyperplane to R(T)} because we have one for the target set N(s,yo).



CHAPTER V
LINEAR STABILIZATION OF THE LINEAR OSCILLATOR

2l. The n-dimensional linear oscillator

The control techniques which we have discussed so far have one serious
disadvantage. The logical and mathematical steps from the measurement of
the state of the system to the actual imnlementation of the control force
are quite complicated. In this chapter we will present a stabilization
technique whose implementation is very simple.

Consider a one dimensional oscillator

¥+ ax =u, a>0 (21.1)
When u = 0 it is well known that the solutions oscillate indefinitely
maintaining constant energy. To damp out these oscillations it is often
convenient to put

u=- yx, (21.2)
thus prouiding a control force proportional to velocity but oppositely
directed. The resulting closed loop system is

¥+ vx+ax =0 (21.3)
for which x = x = 0 is an asymptotically stable critical point.

Let us generalize somewhat on this theme. An n-~dimensional linear

oscillator is represented by a second order system

%+ Ax =0 xe R* A, an nxn matrix (21.4)
where A is symmetric and positive definite. It ig easy to verify for such
a system that the energy

BEGoR) = 5 (8 + 3 (x,4%) (21.5)
is conserved in the motion. Suppose now that b19 bz,...,bm, m < n, are unit
vectors in R" and ul, uz,...,um are scalars representing how much control
force we exert in the directions b bz,...,bm, respectively, The controlled

l,
system is then

e &
[

X + Ax = Bu B = (bl’bZ""’bm)’ u = (21.6)

*see

m
u

Now let us measure the component of the oscillator’s velocity in the direction

bi’ i=1,2,...,m. Calling this quantity vi we have

i 03
v o= (bi,x)
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v1
and, putting v = v we have v = BTi.
o
Suppose we decide now to employ the control policy
u=-yy= - YBTQ (21.7)
The resulting closed loop system is
¥+ yBBTR + Ax = 0 (21.8)

If the equation (21.4) is a finite dimensional apvnroximation to a
distributed oscillator we may consider the possiblity of measuring the velocity .
at various stations on this distributed object. Each such measurement
yeilds the quantity (b, X) for some vector b which depends upon the station in
question. On the other hand b u representg a force of magnitude g applied to
the distributéd oscillator at that same point. Thus one interpretation
of the control policy we have described is that we measure velocity at m
different stations and apply forces at those same stations which are megatively
proportional to the measured velocities. Engineers call this an ILAF

(Identical Location of Accelercmeter and Forces) control system.

Theorem If rank [B,AB,...,ArB} = n for some positive integer r, then

x = x = 0 is an asymptotically stable critical point for equation (21.8)

Proof. Put E(x,%) = %-(i,i) +-% (x,Ax). We compute. the time derivative of
this quantity along solutions x(t) of our differential equation:

‘e # l a @9

TEGE =3 R + 1 G0 + T (A + 5 (A0 = (L9 + (R,A%)

(since A is symmetric)
= (%, ~YBB'# - Ax) + (%,A%) = —y(%,85°%) = ~v]|3'%|]|%2 < 0
and equality holds only on that linear subspace of the 2n-dimensional

state space RZn where BTi = 0,

T

There is a theorem due to LaSalle which states that, under the above
conditions, we have
1im x(t) = lim x(t) = 0

t-0 T
if no non-trivial solution x(t) of equation (21.8) can satisfy BTﬁ(t) 0,
i.e. if no nontrivial solution of the differential equation can remain in:B.
Suppose it were true that BTﬁ(t) £ 0. Then BBTi(t) = 0 also and such a

solution must satisfy
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X+Ax=0
also, so that x(t) = -Ax(t). i
Now if BTi(t) Z 0 then Q% BTi(t)

0, =1,2,...,2v. Now

dat
2 8% = 3w = BTax(e) = 0
d2 T T
—5 B x(t) = ~B Ax(t) = 0.
dt
Continuing in this way we see that
a1 AT
St BR(E) = ((LIBAR(E) 20, § = 1,...,1.
3
dt”-
Thus
]
-3TA
: x(t) =0
(-1)¥BTAT pT
which iuplies x(t) = 0O since rank . = rank [B,AB,...,ArB] = .
(1l)rBTA?

"

But 1f x(t) = 0 also ¥(t) = 0 and, since ¥(t) + Ax(t) = 0 and A is positive
definite we have x(t) = 0. Thus x(t) = x(t) = 0 and we have the trivial
solution. It €>llows that x = x = 0 must be asymptotically stable.

22, Generalization to the infinite~dimensional oscillator.

Our main purpose in this section will be to obtain an infinite
dimensional analog of the result which we have just proved for an n-dimensional
oscillator. This will not be particularly easy for LaSalle's theorem does
not carry over into the infinite dimensional case. Our proof will be
based on perturbation theory of linear operators and we will have to make

a number of assumptions having no counterpart in the above finite dimensional

theory.
We consider
K+ Ax = gu (22.1)
for %, g lying in a Hilbert space H,||g|]| = 1, and A self-adjoint and

positive, 1.e.
(x,Ax) Z_uilxllz for some-a > O, (22.2)
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We assume A has eigenvalues £ < Al < Az ... and corresponding eigenvectors

¢l,¢2,... forming a complete orthonormal set in H. Expanding g in terms of

these eigenvectors we have

[ -]

2= ) v (22.3)
L et

and we assume no Y = 0 so that g is not orthogonal to any eigenvector of A,

The control policy which we will employ is

u(e) = - ex,8), e 0, (22.4)
yielding the closed loop system

X+ eGx+Ax=0 (22.5)
where G is a linear operator from H into itself given by

G(x) = (x,2)8. (22.6)
It should be noted tha; G is a projection, i.e.,

G~ = G, for G(5(x)) = ((x,8)g,8)g = (x,8)(g,g)g = G(x).
Theorem. If equation (22.5) has any solution of the form

x(t) = "%,  ¢em, |]o]] =1, [(w.l.0.g.)]
then Re(v) < 0.

Procf. If there is such a solution then

th(VZI + evG + A =0

so that v,$ provide a solution of the quadratic eigenvalue problem
(sz +evG + A)¢ = 0, (22.7)

Then (( %I + evG + A)¢,9) = 0 so that

v2 4 ev(Gs,4) + (Ad,9) = O, (22.8)

a quadratic equation in v. Using the quadratic formula we have

—e(60,8) £ Ve2(@o,0)2 - 4(a0,0)
2

v

(22.9)

From the positivity of A it is clear that Re(v) < 0 if (G¢,¢) > 0. Now since
G is a projection we clearly have (G$,4) > O so all we need to do is to
show that (G¢,¢) # 0. Now
(©0,4) = ((6,8)2,6) = (6.8)(g,8) = |(4,)|°
so (G$,9) = 0= ($,g) = 0. But if ($,2) = 0 then G = ($,g)g = 0 and

(V21 + evG + A)p = 0 & (W2 + A)g = 0
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which implies that ¢ is an eigenvector of A corresponding to the eigenvalue

—vz. But then ¢ = ¢k for some k and we have

0= (¢,8) = (,,8) =¥y, =H v, =0
which contradicts our supposition that no Yk = 0, Thus (G$,$) > 0 and we
must have
Re(v) < 0
as claimed,
(Note that we made no assumption on the size of v)
Thus, if we could assert that every solution of our closed loop system,
e.g. (22.5), is a linear combination of solutions of the above form it
would be clear that every such solution x(t) satisfies
lim || x(e)]] = o.
oo
It all sounds very easy, but in order to follow this route we will have

to introduce quite a bit more in the way of mathematical machinery.

23. A Perturbation Result in Hilbert Space.

We consider the differential equation in H:

o

X+ Gk + Ax = 0, Gx = (x,8)g, g = kZI Yeber v * 05 k= 1,2,... (23.1)
For convenience now we put
L b = g k=1,2,...
A /2 k=1,2,...
w -1 1 A T Ay K= 1,2, (23.2)
Ak k=-1,-2,...
Y = Yék’ k=1,2,...
Now put x # A~1/2x1, X = x2 (23.3)
where Aml/2 1s the inverse of the unique positive square root of A, and we
obtain

a xl 0 Al/2 x1 —~ xl
— = = 'A(e) (23.4)
dt X2 _A1/2 —eG x2 x2
which is a first order equation in éEh' For a given initial vector

X

the solution of the above first order equation is

ON O
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0 A1/2 %

1
o —Al/z -G “ xg
0
It is clear that the properties of such solutions will depend upon the nature
of the spectrum of K(s) and the associated eigenvectors, if there are any.
Suppose now we could prove that K(s) has eigenvalues vk(e), k=+1, +2,...
and associated eigenvectors wk(s), k=+1, + 2,... with the property that the

wk(s) form a Riesz basis in B T H, i.e. each vector ZEH(:)H has an expansion

o©

z= ] [g () (e) + g (D ()] (23.5)
k=1

and there are positive numbers M and m, independent of Z, such that

v 2 2 2 v 2 2
mo Lo Dlgl” + 1 171 < izl :Mkzl [ g 17+ e, |7 (23.6)
x1
0
If this is true, expand 2 in terms of the wk
%0
1
Yo 7 (23.7)
= E ¥, + E U 23.
2 Wl R T STk )
0/ 1
and we have exp(x(e)t) *o =
%
) £, exz (vtdy + & exo(v_  t)y (23.8)

k=1

and we claim that this vector-valued function approaches zero as t-~, For,

let p > 0 be given. Since

1
® X
- 2 2 1 0 ) 2
Z' H Ekl + lg_.k' ].f.;;“( 2) ”

k=1 0

the sum on the left converges and we can find kp such that

w

2 2 2
Yoonlg "+ e 171 < o
k=kp M
Then, since all Vi have negative real parts, iexp(vkt)l < 1 for all k and

we have
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2 pes 2 2
<M g, exp (v, t) + |g_, exp (-y, t) )
) 1 k=gl(lk 8 12+ e oy

w §o (wt)[? + (o] + 2
L3 lg exp (B [" + g exp(o )] 2

Now let v = . max {Re(vk)} < 0
p k=il, o900 ’i-“kp—l

and we have
k -1

2 2 2

L O N ¢ 'Ek exp (v, t) |+ li_k exp(\)_kt)l )

k=1
k ~1

< Mexp (2vt) E ( !Ek

12+ Je_ |H

Taking tp__ so large that exp (2vptp) £
k -1

e
2 7 (]
k=1 k

12+ le_ 1>

we gee that for all t > tp
llexp B(e)t)|| < p. Hence, 1im ||exp (R(e)t)|] = 0.
f-poo
Thus it remains only to show that X(e) possesses a Riesz basis of
eigenvectoyrs vk(e). This is not particularly easy but we will be able to
indicate the main ideas of the proof.

Theorem. If
(1) 3M > 0 such that 0 < }Yki <M ‘—];—- » k=1,2,...

k
k

M T M1

(ii1) & > 0 is sufficiently small

(11) 3®> 0 such that <M, k=2,3,...

then K(e) has eigenvalues

v (e) = iy - -% kalz + 0(e?

Dy,

and corresponding eigenvectors wk(s) forming a Riesz basis in H
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Remark. Condition (ii) above implies that W 3_Mbk for some My 2 0. It
also implies a separation between Wy and W which remains bounded away from
zero for all k= 2, 3, .... It would seem that the theorem should be
true under more general conditions but as yet we have no proof of this.
Let v be a complex number and consider the identity

1/2 1/2

-vI A A

$ 0
—Allz ~-yI=-eG v -(A + VG + v21)¢
valid for ¢edom A. If there exists a non-zero ¢ed such that
(A + evG + v21)¢ = 0
then v is an eigenvalue of K(e) and
A1/2 p

Y=c , ¢ arbitrary scalar,
v

is an associated eigenvector. If we take

1

—_ 5, ¢=49
V2 || .

N
we obtain the orthonormal eigenvectors of the "unperturbed" operator A(0),

v = dw ¢ =

k kail’iz"..

namely
bk bk
1 1
H \/‘,_ k=1,2,...
V2 \ 19, 2\ -1,
The idea is to show that if ¢ > 0 is sufficiently small the eigenvectors of
X(s) remain close enough to those of X(O) so that there will exist a

bounded and invertible linear transformation taking the eigenvectors of

K(0) into those of X(c). This is accomplished in the following way.
For k =+ 1, + 2, we put

vk(e) = iy - %-lvklz + euk(S)
0, () = o, - clu (A - MEDTEGH + eld - LED 4 (o) (23.9)

w.l.0.g

(Note: Ak = AEk\S EkA)

where Ek is the orthogonal projection from H onto the subspace of H .

=
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spanned by ¢1’¢2"'"¢k-l’¢k+l’¢k+2""‘
Now consider the equation satisfied by vk(e) and ¢k(s)

(A + ev, (€)C + vk(e)21)¢k(e) =0 (23.10)

Abbreviate this by writing xk(e) = 0, Such an equation is true if and
only 1if

Ekxk(e) =0

(xk(s)’(bk) = 0.

Thus we must have
B, (A + ev, ()G + vk(a)zl)qbk(s:) =0
((A + v, (€)G + vk(e)zl)cbk(s),cbk) =0 (23.11)

Now substitute the expressions (23.9) in place of vk(e) and ¢k(e) in (23.11).
So doing we obtain a pair of very complicated equations which we will not
reproduce here., Suffice it to say that they have the form

uk(e)[l + eFk(e,uk(e),Bk(e))] = eGk(esek(e))

Gk(E) + er(E,uk(E),Gk(s)) = eJ, (e,1, (€)) (23.12)

The first equation is a scalar equation. The second 1s a wvector equation
in the space EkH. Together they may be considered as a vector equation in
H itself, To this equation we apply the implicit function theorem as it
is stated for equations in Hilbert spaces (see for instance, the book by
Dieudonné). Using the assumptions of the theorem and this implicit function -
theorem we can show that
o P
W
Hek(e)H < K, (8) (23.13)

uniformly for all k =+ 1, + 2, + 3,... and le| 2g for some g, > 0.

Then, going back to (23.9) we have

0

1
7 )
|y |

1
¢k(e) = ¢k + 0 (e __FEZT ) (23.14)

vk(s) = iuk - %’lYklz + 0 (e
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-4
Because Z ! 1|2 < ® . a theorem of Paley and Wiener applies to show that
k=1 jo
k

the ek(e) form a Riesz basis in H. Then

1 al/2 4, (€)
VTl | v @

N
can easily be showm to form a Riesz basis of eigenvectors of A(e) in HC:)H

K=+1, +2, ...

and we have the desired result.



CHAPTER VI.

OPTIMAL CONTROL OF A DISTRIBUTED OSCILLATING SYSTEM
WITH RESPECT TO A QUADRATIC COST CRITERION

24. Formulation of the Optimization Problem.

Our basic control system is described by a second order orxdinary
differential equation in a Hilbert space H:
d2 ~
—= + Ly = Bu(t) (24.1)
dt
L is a self-adjoint positive operator (in general unbounded) defined on
a dense domain A C ¥ with eisenvalues Ai 3_A0 >0, i=1,2,... and

assoclated eigenvectors ¢1, ¢2,.... Whether or not there are multiple

Nt

eigenvalues is unimportant as long as that multiplicity remains finite.

The control u(t) will be taken as an element of m—~dimensional Euclidian

space. -
A system state consists of a pair w = in the basic

dy

dt

state space H(:)H. We will only be concerned with states possessing

finite energy

1 2 d 2
e =3 (1RY%102+ 112 ) (24.2
2 dt
If
-] d 00
y
y= ) mé. == .1 té (24.3)
I 3 ST
then o
2
E@ == | 5 A+ c)? (24.4)
2 k' k k
k=1
We will let &% C BH~H denote all finite energy states. With the inmer
product
. 'y y . .
(w,w) + , = (Bl/zy,Lllzy) + (él’ _Cly_)(zz,,s)
E ~ ar’ dt
dy dy
dt dt E (the usual inner oroduct in H)

W, becomes a Hilbert space with norm

E
lwll, = V& = 3/28W (24.6)
It can be shown quite easily that if the initial state w(0) lies in WE

and if we select a control u(t) such that
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T 2
[ luw]lfae <=
8]

for all T > 0 then the resvonse w(t) to u(t) via the differential
equation g;- + Ly = éu(t) (w(t) may be a generalized solution of this
equation) will lie in WE for all t > 0 and will have uniformly bounded
energy on compact intervals.

It therefore makes sense to assign to each initial state w(0) and

each control u(t) defined on 0 < t < T, a quadratic cost

T
cw(0),0 = [ [l)]]> + @), Uu)lds + [lwm 1> @6.7)
0

where |J is a symmetric positive definite mxm matrix.More generally,
for 0 < t < T we define

T
cwe),w = [ [llws)]];” + uls),Vuls))ds + e l,> (24.8)
t

Our basic control objective will be to choose a square integrable control
u*(t) so that

C(7(0),u*) < C(w(0),u) (24.9)
for all other square integrable controls u.

We will apnroach this infinite dimensional optimization problem
through a series of finite dimenié§nal problems. We will let Wf denote
the 2r-dimensional subspace of B~ H spanned by

¢ ¢2 ¢ 0 0 0

1 r

. R veo
0 O, 0 ¢1 ¢1 ¢r
and we will let Er denote the orthogonal projection frmm!ieDH onto wr.
It should be noted that
Wf c WE < H for all positive integers r.
Our differential equation (24.1) can be written in first order form:

P 0 I 0
'E¥ = Aw + Bu(t), A= ) B = A.) (24.10)
-L 0 B

We project this entire system onto Wr

du
Er 3t = E Aw + E Bu(t)
We let v, = Erw, B = E B Because w is spanned by

() ()
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we readily see that E _Aw = E2 Aw = E AE w = A w_, Thus the projected
r r r r rTY
system is

dwr
T = Arwr + Bru(t) (24.11)

We define a cost for this finite dimensional system by

T
el 3 = [ Hllv @115+ wls), TaeNlds + e @117
- ] 060, V() + ()06 s + (0, (V0 (),
L 0
T
V = (24.12)
t 0 E

r

commensurate with the cost C(w(t),u) for the original infinite dimensional
system, and consider the problem of minimizing Cr(wr(O),u), i.e. of
finding a square integrable u:(t) such that

% _
C_(w _(0),u*) < C_(w_(0),u) (24.13)
for all square integrable u.

25. Review of the Optimization Problem in the Finite-Dimensional Case.

Now let us refresh our memory concerning the solution of this
finite dimensional optimization problem. This problem was flrst treated
by Kalman and has been worked over several times since, notably by
W. M. Wonham and D. L. Lukes.

We consider a matrix differential equation
ot _ T S T
ArQr + QrA + vr QrBrU BrQr (25.1)

with terminal condition Qr(T) =V.. We let u(t) be any square integrable

control on [0,T] and we compute
C G _(0),0) - (w_(0),0,(0)w _(0)) = [

T

. [(wr (s) ,err(S))

+ (W), Ua(s))1ds + (w_(T),V v (1)) - (v_(0),0,(0)w_(0))
T

= IO [(w_(s),V, 9 (s)) + (u(s),Uu(s))]ds
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T

T
+ fo '%; (v (s),0 (s)w_(s))ds = Io [(wr(S),err(S)) + (u(s),lu(s))

+ (Arwr(s) + Bru(s),Qr(S)wr(s)) + (wr(S),Qr(s)(Arwr(s) + Bru(S)))

+

(wr(s), [~A$Qr(s)- QQ@QAr -+ Qég)BrU—lBﬁqreg]wr(s))]ds

T
fo [ (u(s),Uu(s)) +(BrU(S),Qr(S)wr(s)) + (wr(s),Qr(S)BrU(S))

+ (@ (), [Q,(s)BUT'B20_()]w_(s))1ds

T

f 1) + 30, (), U™ (Uu(s) + Bio_(s))1ds

Thus
Cr(wr(O),u) - Gwr(O),Qr(O)wr(O))

T
= [ [@u(s) + B*Q_(s)), U (Uu(s) + B%Q_(s))1ds > 0
0 r'r r'r -
for any choice of u. Moreover, for the choice

1

uk(t) = -u B*Q_(s) (25.2)

we have

Cr(wr(O),u) - (wr(O),Qr(O)wr(O)) = 0 (25.3)

Thus we conclude (i) the ontimal control for the finite dimensional
problem is generated by the linear feedback law (equation (25.2)) and
this is the unique solution of that problem; (ii) The optimal cost for
the finite dimensional problem is (wr(o),Qr(O)wr(O)) where Qr(t) satisfies
the Kalman-Riccati differential equation (25.1): (iii) At any intermediate
time 0 < t < T, u? is the unique control minimizing Cr(wr(t),u) and

the optimal cost is (wr(t),Qr(t)wr(t))-

26. Generalization to the Infinite-Dimensional Problem.

Now the idea is to increase the dimension, letting r tend to
infinity, and show that the controls u: converge to the optimal control
u* for the original infinite dimensional nroblem.

Our first step will be to establish a certain monotonicity. We
claim that the following relationship holds:
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T 3 =
Thenever vr(t) Erwr+l(t)’ we have

C (w (£),ud) < C . (w  (E),u% ), O0<t<T (26.1)

+1”?
The proof is quite easy. By optimality of u? we have

c (w (t), u*) < C (W (t), ur+l)

T
But C (w (6),u%,)) = [ [¥,(),V,5 (D) + (ufy; (), 00, ())]ds

t
dwr '
+ (w (T),Vv w (T)) where w (s) solves = A w + B u* (s) with w (t) =
¥y

wr(t). Thus w (s) = E wr+1(s) where wr+1(s) satisfies s
Ar+1wr+l + Br+1u:+l(s). Then

Crpd Wpag (£)5084) = C G (€),ug,0)

= IT (_,(s),V (s)) - (w_(s),V v _(s))d

- 0 [ e+l 8), r+17r+1 8 W 18),V W is)jds

. L A
+ (Wr+1(T)’Vr+1wr+1(T)) (wr(T),err(T))
T

= fo [, 18,V v 1 (&) = (v, (8),EV Ew ,(s))]ds

F O V¥ M) = G (DB, 0By () 20
since Er commutes with Vr+1'

Thus, what we have actually shown, since w(t) could be any element

in ¥, is that with weW_,, v, = Erw, Ve = Er+1w,

E
(v ,0 (t)w ) < (vvr+1,Qr+1(t)w +12 (26.2)
for each positive integer r and each t, 0 < t < T.
Now let weW and let 3(5) be the so¢lution of %g-- Aw + Bu for
u(s) =0, t <s <T, "
dw N
i.e. — = Aw, w(t) = w. (26.3)
ds
In this case energy is conserved and we have
n n
W&l = %ol = [l e<s <.

Consequently,
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.
c@®,0 = [ |[we 1}l s+ [[Fm]] 2
t

= |l (f lds+ 1) = @+ (@-0)]|w]]

< @+ T)IlwIIE for 0 <t < T.

By more ot less the same ayrguments given previously we see that for the
r-dimensional system
c (w ,0) < C(w,0) (26.4)

so that (wr,Qr(t)wr) < (1+ T)Ilw!lE , W, *Ew.

Thus, for any te[0,T] and for any weWﬁ we have

W) < (.0 ) < 1+ D ]| (26.5)

whence, with Vr as defined previously and

L 0
VvV = (26.6)
0 I

we have

@22, w2 et/ G2,

r’® r l"

1/2 v -1/2 Q 1/2 1/2
r+1 Vrdl? Vr+l Crel +1 Y+l

1/2 'l
~1/2

2w (t)V )

< 1+ D]l
1/2

We extend V to an operator Qr(t) on H(EDH by setting

1/2

Q. (t)V

Qr(t)Z - v; Qr(t)V;l/z z (26.7)

~

where Z=2_+ 2 , Z W, 7 en,
r r’ "r r’ r r

1/2 1/2

1/2
and Vr

Further, we note that V agree on Wr and that V maps

Wﬁ onto H + H with
"Wt!Ez # t]V1IZWl|2 = IIZIIZ, where Z = Vllzw.
From this we conclude that for any ZeH + H we have
3 A 2
(z,Q,()2) < (Z,Q_,,()2) < (1 + D||z]] (26.8)

so that the Qr(t) form a sequence of self-adjoint positive semi-definite

operators which are monotone increasing and bounded above. We then cite
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a familiar theorem of functional analysis to the effect that there is a
self-adjoint positive semi-definite operator 0(t) defined on H<:)H with
the property that for each Z H®H

1im ér(t)z = Q(t)z (26.9)
rT-r
Moreover (Z,0(t)2) < (1 +M||z] 12, ZSHGDH, 0<t<T. Put
ae) = v/ 2q()vt/? (26.10)
and we have (v,Q(t)w) < (1 + T)l]w]'wz for all well,. (26.11)

We now claim: the control u¥*(t) which minimizes the cost €(w(0),u)
is uniquely determined by the feedback law

uk(t) = U IB*Q(t)w(t) (26.12)
and the optimal cost is C(w(0),u*) = (w(0),Q(t)w(0)) for each initial
state w(0) in WE'

To prove this we first note that

pev1/2 o (0,3%) (
0 1

/2 _ B*V—llz = B%.
rr r

L1/2 0 .
= (0,B%) = B*

and, in the same way, B?V_ Consequently

1 /2 1,01/ -1/2

2
0, (t)V_

- -1 - - -1 .~
% == & = *
U BrQr(t)Vr U BrVr U BrQr(t).

Let w(0) be chosen as a finite energy state and let W}(O) = E w(0).
r
We note from earlier work that for any square integrable u
T
C.(w (0),u) = Io [ (£),V,w (£)) + (u(t),Uu(t))]dt

= (w,(0),0_(0)w_(0))

T
RRCICRE HOMC v u(e) +B%Q, (t)v (£)))ae
We let r + », The term (wr(t),Ver(t)) tends to ||w(t)l!E2 for each t.

The term (wr(O),Qr(O)wr(O)) can be rewritten as
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-1/2 V1/2

1/2 -1/2
(Vr v (0), v. Q. (0V_ .

wr(O))

~-1/2

= @,, ;Y% ooy 2y o).

Zr(O)) with Zr(O) = Vr v,
As r tends to « this quantity approaches (Z(0), Q(0)Z(0)) =
(w(0), Q(0)w(0)).
Consider B*Q (t)w_(t) = B*V-l/zo (t)V—ll
rra rr T r
each fixed t to B*Q(t)Z(t) = B*qQ(t)w(t).
Using the above-noted pointwise convergence results together with

2Zr(t) which converges for

the Lebesque dominated convergence theorem we have

Clw(0),u) = (w(0),0(0)w(0))
T ,

+ [ ((Wu(t) + B*o(t)w(t)), U L(Uult) + B*0(E)w(t)))dt
0

from which it is clear that the optimal control is

uk(t) = -U " B*Q(t)w(t)

= 1im -U”133Qr(t>wr(t) = Lin u(r)
rw >

and our proof is complete.
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